SCHEME OF COURSE WORK

Course Details:

Course Title	Advanced Data Structures (Professional Elective – I)							
Course Code	15CT1111 L T P C :3003							
Program:	B.Tech.	B.Tech.						
Specialization:	Information Technology							
Semester	IV							
Prerequisites	None							
Courses to which	n it is a prerequisite	None						

Course Outcomes (COs):

1	Apply concepts of Heaps.
2	Use Hash functions in indexing.
3	Design applications using Red-Black and Splay trees.
4	Explain Digital Search Structures.
5	Apply various String Matching Techniques.

Program Outcomes (POs):

A graduate of Information Technology will be able to

1	Apply the knowledge of mathematics, science, engineering fundamentals and principles of Information
	Technology to solve problems in different domains.
2	Analyze a problem, identify and formulate the computing requirements appropriate to its solution.
3	Design & develop software applications that meet the desired specifications within the realistic constraints to serve the needs of the society.
4	Design and conduct experiments, as well as to analyze and interpret data
5	Use appropriate techniques & tools to solve engineering problems.
6	Understand the impact of information technology on environment and the evolution and importance of green
	computing
7	Analyze the local and global impact of computing on individual as well as on society and incorporate the results
	in to engineering practice.
8	Demonstrate professional ethical practices and social responsibilities in global and societal contexts.
9	Function effectively as an individual, and as a member or leader in diverse and multidisciplinary teams.
10	Communicate effectively with the engineering community and with society at large.
11	Understand engineering and management principles and apply these to one's own work, as a member and leader
	in a team, to manage projects.
12	Recognize the need for updating the knowledge in the chosen field and imbibing learning to learn skills.

Course Outcomes Program Outcomes Mapping:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO-1	3			3	3		3			2		3	3	2	
CO-2		3			2								3	2	
CO-3	3	3		3	3		3	2			2	3	3	2	
CO-4		2		2			3					2	3	2	
CO-5															
	3	3		3	3	2	2		2				3	2	

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assessment	Methods:
------------	----------

Seminar / Mid-Test / End Exam

Teaching-Learning and Evaluation

Week	TOPIC / CONTENTS	Course Outcomes	Sample questions	TEACHING- LEARNING STRATEGY	Assessment Method & Schedule
1	UNIT-I: Single and double ended Priority Queues, Leftist Trees – Height Biased Leftist Trees, Leftist Trees – Weight – Biased Leftist Trees, Binomial Heaps – Cost Amortization, Definition of Binomial Heaps	COI	 What is the Difference Between single and double ended priority queues. Explain in detail about Height Biased Leftist Trees. Explain in detail about Weight Biased leftist Trees. Define Binomial Heaps. 	• Lecture	Mid –Test 1
2	Insertion into Binomial Heaps, Melding Two Binomial Heaps, Deletion of Minimum Element, Analysis	COI	 Write a procedure to insert an element into a Binomial Heap. Write a procedure to meld two binomial heaps. Write an algorithm to delete smallest element from heap. 	• Lecture	Mid –Test 1
3	Fibonacci Heaps- Definition, Deletion from an F- Heap, Decrease Key, Cascading Cut, Analysis, Application to the Shortest Paths Problem, Pairing Heaps- Definition, Meld and Insert	CO1	1.Prove that if we start with empty F- Heaps and perform only the operations insert, meld, and delete min, then all min trees in the F-heaps are binomial trees.	• Lecture	Mid – Test 1
4	Decrease Key, Delete Min, Arbitrary Delete, Implementation Considerations, Complexity	CO1	1.Into an empty two pass min pairing heap, insert elements with priorities 20, 10, 5, 18, 6, 12, 14, 9, 8 and 22(in this order). Show the min pairing heap following each insert.	• Lecture /	Mid – Test 1
5	UNIT II: Hash Functions, Division, Folding, Mid Square Function, Extraction, Radix Transformation, Collision Resolution, Open Addressing, Chaining	CO2	 What is the minimum number of keys that are hashed to their home positions using the linear probing technique? Show an example using a 5-cell array. Is there any advantage to using binary search trees instead of linked lists in the separate chaining method? 	• Lecture /	Mid – Test 1
6	Bucket Addressing, Deletion, Perfect Hash Functions – Cichelli's Mehtod, Perfect Hash Functions – The FHCD Algorithm, Hash Functions for extendible files – Extendible Hashing	CO2	 In which case does Cichelli's method not guarantee to generate a minimal perfect hash function? Apply the FHCD algorithm to the nine Muses with r=n/2=4 and then with r=2. What is the impact of the value of r on the execution of this algorithm? 	• Lecture	Mid –Test 1 Seminar
7	Hash Functions for extendible files – Linear Hashing, UNIT III:Efficient Binary Search Trees: Optimal Binary Search Trees, AVL Trees, Red – Black Trees: Definition	CO2 & CO3	 Strictly speaking, the hash function used in extendible hashing also dynamically changes. In what sense is this true? Draw the transformations for the rotation types RR and RL. Compare the worst-case height of a red-black tree with n nodes and that of an AVL tree with the same number of nodes. 	• Lecture	Mid –Test 1 Seminar
8	Representation of Red-Black Tree, Searching a Red- Black Tree, Inserting into a Red-Black Tree, Joining Red-Black Trees	CO3	1.Develop the deletion transformations for Red-Black tree. Show that deletion from a Red – Black tree requires at most one rotation.	• Lecture	Mid –Test 1 Seminar
9	Mid-Test 1	CO1, CO2, CO3			Mid-Test 1 (Week 9)
10	Splitting a Red – Black Tree, Splay Trees, Bottom – Up Splay Trees, Top – Down Splay Trees	CO3	1.Obtain a function to perform a two- way join on red-black trees. You may	 Lecture / Demonstration 	Mid –Test 2

			assume the existence of functions to search, insert, delete, and perform a		
			three-way join. What is the time		
			complexity of your two-way join		
			2 What is the maximum height of a		
			bottom-up splay tree that is created as		
			the result of n insertions made into an		
			initially empty splay tree? Give an		
			example of a sequence of inserts that		
			results in a splay tree of the height?		
11	UNIT –IV: Digital Search Structures – Digital	CO4	1. Write the binary trie functions for	• Lecture	Mid –Test 2
	Search Trees, Digital Search Trees- Definition,		the search, insert, and delete	Problem solving	
	Tries Compressed Binary Tries Patricia		2 Write a function to delete the		Seminar
	Thes, compressed binary Thes, I athena		element with key k from a Patricia		
12	Multiway Tries, Definition, Searching a Trie,	CO4	1.Draw the tire obtained for the	Lecture	Mid – Test 2
	Sampling Strategies, Insertion into a Trie, Deletion		following data: AMIOT, AVENGER,		
	from a Trie		AVRO, HEINKEL, HELLDIVER,		Seminar
			MACCHI, MARAUDER,		
			MUSTANG, SPITFIRE, SYKHOI		
			sample the keys from left to right one		
12	Koug with different length Height of Trie Space		1 Exploin how a tria could be used to	□ Looturo /	
15	required and alternative load structures Prefix search	0.04	implement a spelling checker		Mid –Test 2
	and applications. Compressed Tries. Compressed		implement a spennig encerter.		
	Tries				Seminar
14	Compressed Tries with Skip Fields, with labeled	CO4	1.Write an algorithm to insert a key	= Lecture /	Mid – Test 2
	edges, Space Required by a compressed Trie,		value x into a trie in which the keys		
			are sampled from left to right, one		
		005	character at a time.	T i i	
15	UNIT – V: String Matching- Exact String Matching	COS	1.Apply the Knuth-Morris-Pratt	= Lecture /	Mid – Test 2
	- Straightforward algorithms, The Knuth - Morris -		algorithm first with next and then with nextS to P-bachaga and		
	That Algorithm, The Doyer – Moore Algorithm		T=bacbacabcbacbbbacabacbabcbbba.		
16	Multiple Searches, Bit-Oriented Approach, Matching	CO5	1. Consider the serch for a pattern in a	Lecture	Mid-Test 2
	Sets of Words		text when the pattern is non in the		
			text. What is the smallest number of		
			character comparisions in this case		
			executed by		
			i. Knuth-Morris-Pratt?		
17	Regular Expression and Matching. Suffix Tries and	CO5	1. Draw Ukkonen suffix tries for	Lecture	Mid-Test 2
	Trees. Suffix Arrays	000	a. aaaa d. abcd g. aaba		
			b. aabb e. baaa h. aaab		
			c. abba f. abaa		
18	Mid-Test 2	CO3, CO4.			Mid-Test 2
		CO5			
19/20	END EXAM				